Fundamental Molecular Mechanism for the Cellular Uptake of Guanidinium-Rich Molecules
نویسندگان
چکیده
Guanidinium-rich molecules, such as cell-penetrating peptides, efficiently enter living cells in a non-endocytic energy-independent manner and transport a wide range of cargos, including drugs and biomarkers. The mechanism by which these highly cationic molecules efficiently cross the hydrophobic barrier imposed by the plasma membrane remains a fundamental open question. Here, a combination of computational results and in vitro and live-cell experimental evidence reveals an efficient energy-independent translocation mechanism for arginine-rich molecules. This mechanism unveils the essential role of guanidinium groups and two universal cell components: fatty acids and the cell membrane pH gradient. Deprotonated fatty acids in contact with the cell exterior interact with guanidinium groups, leading to a transient membrane channel that facilitates the transport of arginine-rich peptides toward the cell interior. On the cytosolic side, the fatty acids become protonated, releasing the peptides and resealing the channel. This fundamental mechanism appears to be universal across cells from different species and kingdoms.
منابع مشابه
On Guanidinium and Cellular Uptake
Guanidinium-rich scaffolds facilitate cellular translocation and delivery of bioactive cargos through biological barriers. Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking. Charge pairing and hydrogen bonding with cell surface counterparts...
متن کاملMolecular dynamics studies on the denaturation of polyalanine in the presence of guanidinium chloride at low concentration
Molecular dynamic simulation is a powerful method that monitors all variations in the atomic level in explicit solvent. By this method we can calculate many chemical and biochemical properties of large scale biological systems. In this work all-atom molecular dynamics simulation of polyalanine (PA) was investigated in the presence of 0.224, 0.448, 0.673, 0.897 and 1.122 M of guanidinium chlorid...
متن کاملBackbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides
In addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics...
متن کاملPassage of Trojan peptoids into plant cells.
Efficient drug delivery is essential for many therapeutic applications. In this context, Trojan peptoids have attracted attention as powerful tools to deliver bioactive molecules into living cells. Certain cell-penetrating peptides, peptide mimetics, and peptoids have been shown to be endowed with a transport function and the structural features of this function have been characterized. However...
متن کاملAn efficient green synthesis of some new 4H-pyrimido[2,1,b]benzimiazoles and 4H-pyrimido[2,1,b]benzothiazoles promoted by guanidinium chloride
A facile and highly efficient protocol was applied successfully to synthesize 4H-pyrimido[2,1,b]benzimiazoles and 4H-pyrimido[2,1,b]benzothiazoles through one-pot three-component cyclocondensation reactions of 2-aminobenzimidazole or 2-aminobenzothiazole with dimedone and aromatic aldehydes in the presence of guanidinium chloride under solvent-free conditions. The reactions us...
متن کامل